
23.Stepper_Motor

Introduction
Stepper motors, due to their unique design, can be controlled to a high degree of

accuracy without any feedback mechanisms. The shaft of a stepper, mounted with a

series of magnets, is controlled by a series of electromagnetic coils that are charged

positively and negatively in a specific sequence, precisely moving it forward or

backward in small "steps".

Hardware Required
 1 * Raspberry Pi

 1 * T-Extension Board

 1 * Power Module (with 9V Power Adapter or 9V Battery and Buckle)

 1 * Stepper Motor

 1 * ULN2003 Driver Board

 1 * 40-pin Cable

 Several Jumper Wires

 1 * Breadboard

Principle

28BYJ-48 Stepper Motor

The 28BYJ-48 is a small, 5 volt geared stepping motors. These stepping motors are

apparently widely used to control things like automated blinds, A/C units and are

mass produced. stepper01 Due to the gear reduction ratio of *approximately* 64:1 it

offers decent torque for its size at speeds of about 15 rotations per minute (RPM).

With some software “trickery” to accelerate gradually and a higher voltage power

source (I tested them with 12 volts DC) I was able to get about 25+ RPM. These little

steppers can be purchased together with a small breakout board for the Arduino

compatible ULN2003 stepper motor driver. Quite a bargain, compared to the price of

a geared DC motor, a DC motor controller and a wheel encoder! The low cost and

small size makes the 28BYJ-48 an ideal option for small robotic applications, and an

23.Stepper_Motor

excellent introduction to stepper motor control with Arduino. Here are the detailed

specs of the 28BYJ-48 stepper motor.

Stepper motor 28BYJ-48 Parameters

 Model:28BYJ-48

 Rated voltage:5VDC

 Number of Phase:4

 Speed Variation Ratio:1/64

 Stride Angle:5.625°/64

 Frequency:100Hz

 DC resistance:50Ω±7%(25°C)

 Idle In-traction Frequency:>600Hz

 Idle Out-traction Frequency:>1000Hz

 In-traction Torque >34.3mN.m(120Hz)

 Self-positioning Torque >34.3mN.m

 Friction torque:600-1200 gf.cm

 Pull in torque:300 gf.cm

 Insulated resistance >10MΩ(500V)

 Insulated electricity power:600VAC/1mA/1s

 Insulation grade:A

 Rise in Temperature <40K(120Hz)

 Noise<35dB(120Hz,No load,10cm)

ULN2003 Driver Board

The ULN2003 stepper motor driver board allows you to easily

control the 28BYJ-48 stepper motor from a microcontroller, like

the Arduino Uno. One side of the board side has a 5 wire socket

where the cable from the stepper motor hooks up and 4 LEDs to

indicate which coil is currently powered. The motor cable only

goes in one way, which always helps. UNL2003 board On the

side you have a motor on / off jumper (keep it on to enable

23.Stepper_Motor

power to the stepper). The two pins below the 4 resistors, is where you provide power

to the stepper. Note that powering the stepper from the 5 V rail of the Arduino is not

recommended. A separate 5-12 V 1 Amp power supply or battery pack should be used,

as the motor may drain more current than the microcontroller can handle and could

potentially damage it. In the middle of the board we have the ULN2003 chip. At the

bottom are the 4 control inputs that should be connected to four Arduino digital pins.

Schematic Diagram

T-Board Name physical wiringPi BCM

GPIO18 Pin 12 1 18

GPIO23 Pin 16 4 23

GPIO24 Pin 18 5 24

GPIO25 Pin 22 6 25

23.Stepper_Motor

Experimental Procedures

Step 1: Build the circuit.

For C Language Users

Step 2: Get into the folder of the code.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/C/23.Stepper_Motor

Step 3: Compile the code.

gcc 23.Stepper_Motor.c -o Stepper_Motor.out -lwiringPi

Step 4: Run the executable file .

sudo ./Stepper_Motor.out

As the code runs, the stepper motor first turns clockwise for a round then stop for a

second, after that, it rotates anticlockwise for a round; subsequently, the motor stops

for a second. This series of actions will be executed repeatedly..

Code

#include <stdio.h>

#include <wiringPi.h>

23.Stepper_Motor

const int motorPins[]={1,4,5,6}; //pins connected to four phase

//1---IN1 4----IN2 5---IN3 6---IN4

const int antiClk[]={0x01,0x02,0x04,0x08}; //right

// 0000 0001 0000 0010 0000 0100 0000 1000

const int clk[]={0x08,0x04,0x02,0x01}; //left

// 0000 1000 0000 0100 0000 0010 0000 0001

void moveSteps(int direction, int steps){

int step;

int i=0,j=0;

for(step=0;step<steps;step++){

for (j=0;j<4;j++){ //cycle according to power supply order

for (i=0;i<4;i++){ //assign to each pin

if(direction == 1) //clockwise

digitalWrite(motorPins[i],antiClk[j] == (1<<i));

else //anticlockwise

digitalWrite(motorPins[i],clk[j] == (1<<i));

}

delay(3); //the delay can not be less than 3ms

}

}

}

void motorStop(){ //stop rotating

int i;

for(i=0;i<4;i++){

digitalWrite(motorPins[i],LOW); //0000 0000

}

}

int main(void){

23.Stepper_Motor

int i;

if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

printf("setup wiringPi failed !");

return 1;

}

for(i=0;i<4;i++){

pinMode(motorPins[i],OUTPUT);

}

while(1){

moveSteps(1,512); // clock 512 step

delay(1000); //delay 1000

moveSteps(0,512); // anticlock 512 step

delay(1000); //delay 1000

}

return 0;

}

Code Explanation

const int antiClk[]={0x01,0x02,0x04,0x08}; //right

const int clk[]={0x08,0x04,0x02,0x01}; //left

These two values are used to indicate the rotation of the Stepper Motor, and the

values of them are 0001,0010, 0100, and 1000 respectively that correspond to the

electrification condition of four-phase motor when it rotates.

for (j=0;j<4;j++){ //cycle according to power supply order

for (i=0;i<4;i++){ //assign to each pin

digitalWrite(motorPins[i],antiClk[j] == (1<<i));

}

23.Stepper_Motor

}

This two-layer cycle means that the stepper motor runs for a complete cycle (four

steps of the four-phase stepper motor is one cycle).

void moveSteps(int direction, int steps){

int step;

int i=0,j=0;

for(step=0;step<steps;step++){

for (j=0;j<4;j++){ //cycle according to power supply order

for (i=0;i<4;i++){ //assign to each pin

if(direction == 1) //clockwise

digitalWrite(motorPins[i],antiClk[j] == (1<<i));

else //anticlockwise

digitalWrite(motorPins[i],clk[j] == (1<<i));

}

delay(3); //the delay can not be less than 3ms

}

}

}

This function is used to control the work of the stepper motor, the variable

“direction” is used to determine the rotation direction, and the variable “steps” is

used to determine the times of the work of stepper motor.

moveSteps(1,512);

It takes 2048 steps for the output shaft to turn a circle, and 2048/4=512 times for the

stepper motor to work.

For Python Language Users

Step 2: Get into the folder of the code.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/Python

Step 3: Run the executable file.

23.Stepper_Motor

sudo python3 23.Stepper_Motor.py

As the code runs, the stepper motor first turns clockwise for a round then stop for a

second, after that, it rotates anticlockwise for a round; subsequently, the motor stops

for a second. This series of actions will be executed repeatedly.

Code

The code here is for Python3, if you need for Python2, please open the code with the

suffix py2 in the attachment.

#!/usr/bin/env python3

import RPi.GPIO as GPIO

import time

motorPins = (12, 16, 18, 22) #pins connected to four phase

antiClk = (0x01,0x02,0x04,0x08)

clk = (0x08,0x04,0x02,0x01)

def setup():

GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

for pin in motorPins:

GPIO.setup(pin,GPIO.OUT)

def moveSteps(direction, steps):

for step in range(steps):

for j in range(0,4,1): #cycle according to power supply order

for i in range(0,4,1): #assign to each pin

if (direction == 1):#clockwise

GPIO.output(motorPins[i],((antiClk[j] == 1<<i) and

GPIO.HIGH or GPIO.LOW))

23.Stepper_Motor

else : #anticlockwise

GPIO.output(motorPins[i],((clk[j] == 1<<i) and

GPIO.HIGH or GPIO.LOW))

time.sleep(0.003) #the delay can not be less than 3ms

#function used to stop rotating

def motorStop():

for i in range(0,4,1):

GPIO.output(motorPins[i],GPIO.LOW)

def loop():

while True:

moveSteps(1,512)

time.sleep(1)

moveSteps(0,512)

time.sleep(1)

def destroy():

GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

setup()

try:

loop()

except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy()

will be executed.

destroy()

Code Explanation

antiClk = (0x01,0x02,0x04,0x08)

23.Stepper_Motor

clk = (0x08,0x04,0x02,0x01)

These two values are used to indicate the rotation of the Stepper Motor, and the

values of them are 0001,0010, 0100, and 1000 respectively that correspond to the

electrification condition of four-phase motor when it rotates.

for j in range(0,4,1): #cycle according to power supply order

for i in range(0,4,1): #assign to each pin

GPIO.output(motorPins[i],((antiClk[j] == 1<<i) and

GPIO.HIGH or GPIO.LOW))

This two-layer cycle means that the stepper motor runs for a complete cycle (four

steps of the four-phase stepper motor is one cycle).

def moveSteps(direction, steps):

for step in range(steps):

for j in range(0,4,1): #cycle according to power supply order

for i in range(0,4,1): #assign to each pin

if (direction == 1):#clockwise

GPIO.output(motorPins[i],((antiClk[j] == 1<<i) and

GPIO.HIGH or GPIO.LOW))

else : #anticlockwise

GPIO.output(motorPins[i],((clk[j] == 1<<i) and

GPIO.HIGH or GPIO.LOW))

time.sleep(0.003) #the delay can not be less than 3ms

This function is used to control the work of the stepper motor, in which direction is

used to determine the rotation direction, and steps are used to determine the times

of the work of stepper motor.

moveSteps(1,512)

It takes 2048 steps for the output shaft to turn a circle, and 2048/4=512 times for the

stepper motor to work.

Phenomenon Picture

23.Stepper_Motor

	Introduction
	Stepper motors, due to their unique design, can be
	Hardware Required
	Principle
	}
	Code Explanation
	For Python Language Users

	Step 2: Get into the folder of the code.
	Step 3: Run the executable file.
	Code
	 destroy()
	Code Explanation
	Phenomenon Picture

